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Representation Learning

High-dimensional Representation

_ ———
Data Learning
?ET/CT .Scar.t"” "
Patient Swollen Circulating Mass in
Lymph Nodes Tumor Cell Breast
1 0.3 0.8
2 0.6 0.2

Representation learning liberates us from manual feature engineering.

But it can often produce spurious, inefficient, or entangled representations in practice.

Today: Use causal inference for representation learning

Prediction

Inflammatory
Breast Cancer

Work with a single dataset; Do not leverage multiple environments or invariance or auxiliary labels.



Representation Learning

a.k.a. feature learning

PET/CT Scan*
— Patient Swollen Circulating Mass in
Lymph Nodes Tumor Cell Breast
1 0.3 0.8 04
2 0.6 0.2 0.5
m-dimensional data point X = (X;,...,X,) € R" d-dimensional representation Z = (Z,, ..., Z)) = (X, ..., £(X))

Goal: Find the representation function f = (f;, ..., )
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Representation Learning
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m-dimensional data point X = (X;, ..., X,) € R"
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d-dimensional representation Z = (Z,, ..., Z) = (f;(X, ..., (X))

Goal: Find the representation function f = (f;, ..., )



Representation Learning

This day was a good day

m-dimensional data point X = (X, ..

LX) € R”

Space of Sentences

_»* Asad boy is walking. _® Look how sad my cat is.

o A little boy is walking. _.*” |
: e Look at my little cat!
'I‘o A little boy is running.
!< --------------------- - @ A dog is walking past a field.
A man is walking
in the field. '

V. There is a dog running past the field.

-

d-dimensional representation Z = (Z,, ..., Z)) = (X, ..., £(X))

Goal: Find the representation function f = (f;, ..., )



Why might naive representation learning produce spurious features?



Learning Representations for Dogs

Label=1
Label=0 &

Given n pairs of images X = (X, ..., X;)) and “dog” labels Y, (if a dog is in the image),

find f: 2™ — R%s.t. Z, = f(X,) is a representation that captures important features.



Learning Representations for Dogs
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Representafion

Test set

Naive solution: Fit a neural network from the images X, to the “dog” label Y;

Take the last layer to be the representation f(X)).



The predictions are awfully wrong...
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Predicted label=0 Prdicted label=1
* The learned representation seems to pick up the “whether grass is present in the image” feature.
* |t is a spurious feature. We pick up the grass feature even if the prediction target is the dog label.

* |t is not a neural network training failure; the predictive accuracy is high in the holdout validation set.



What went wrong?

Label=1

Predicted label=1
Label=0

' . | £ R 4 _

Predicted label=0 Predicted label=1

Training set Test set

* In the training set, grass is highly correlated with the dog label.
» Fitting neural networks optimizes predictive accuracy.

* The grass feature predicts the dog label (almost) as well as the dog feature in the training data.



Representation learning picks up spurious features

Label=1 *. ”
Label=0

Predicted label=0  Predicted label=1
Training set et et
* |tis a problem of the training objective. Maximizing predictive accuracy does not prevent spurious features.

Restrict our attention to only non-spurious features? Optimize for non-spuriousness?

 We need a mathematical definition and/or metric of representation non-spuriousness.



Desiderata for Representation learning

Non-spurious Efficient Disentangled
v dog face v/ dog face v/ (dog face, four legs)
x grass x (dog face, four legs) x (dog face + four legs, dog face - four legs)

* Optimizing for predictive accuracy does not produce desired representations.
* Shall formalize the desiderata to be incorporated into learning objectives

 Causal inference is here to help! (Ask “What if...” questions about interventions)



Representation Learning: From Desiderata to Algorithms
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How can we define non-spuriousness and efficiency?



What does “non-spuriousness” mean?

Label=1
v/ dog face

x grass

Label=0

« Non-spurious representations Z = f(X) capture features that causally determine the label.

« The key idea is to view the feature Z = z as a potential cause of the label Y = y, then a non-spurious feature
shall be a sufficient cause of the label.



Non-spuriousness and its Counterfactual Metric

« Suppose Z is the grass feature. Does it
sufficiently cause the dog label?

Label=1
e Given an image that has nograss Z = 0
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" and is not labeled dog Y = 0.
e What would be counterfactual label
Label=0

Y(Z, = 1) if we add some grass into this
image? Would its label become dog?

« We consider counterfactual labels Y(Z = 1) of images when we turn on its features Z.
. Quantify non-spuriousness using the probability of sufficiency (PS) (Pearl, 2009)PS 2 PY(Z =1)=1|Z = 0,Y = 0)

» For continuous features and labels, we consider the PS of 1{Z =z} for 1{Y = y}: PS;_ ,_, SPYZ=2)=y|Z #12,Y+#Y)



What does “efficiency” mean?

Label=1
v/ dog face

x (dog face, four legs)

Label=0

 An efficient representation Z = f(X) captures only essential features of the data; no redundant features captured.

 Again, viewing the feature Z, = Z as a potential cause of the label Y = y, then an efficient representation must
capture features that are necessary causes of the label.



Efficiency and its Counterfactual Metric

e Suppose Z is the ‘dog face & four legs’
feature. Does it necessarily cause the dog

Label=1 label?
* Given an image that has dog face & four legs
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" Z = 1 andis labeled dog Y = 1.
L abel=0 « What would be counterfactual label Y(Z = 0)

If we turn off the ‘dog face & four legs’ feature,
e.g. move one leg of the dog out of the image?
Would its label necessarily become non-dog?

« We consider counterfactual labels Y(Z = 0) of images when we turn off its features Z.
. Quantify efficiency using the probability of necessity (PN) (Pearl, 2009) PN 2 P(Y(Z =0)=0|Z =1,Y = 1)

 For continuous features and labels, we consider the PN of 1{Z = z} for 1{Y = y}: PNZ:Z,Y:y - PY(Z #1z2)#v|Z=12,Y=Yy)



Quantifying Non-spuriousness and Efficiency Simultaneously

* Quantify non-spuriousness and efficiency simultaneously using the probability of necessity and sufficiency (PNS) of
PNS2PYZ=0)=0,Y(Z=1)=1)

* Non-spuriousness: counterfactual labels when we turn on its features; Efficiency: counterfactual labels when we turn off its features

« For multiple features: conditional non-spuriousness and efficiency PNSZj,le_j = PY(Z=0,Z_;=1)=0,YZ =1,Z_=1)=1)



Representation Learning as Finding Necessary and Sufficient Causes

« CAUSAL-REP: Maximize the non-spuriousness and efficiency of the representation

n
m;lX Z log PNSf(X)=f (x;), Y=y,
=1

where X = (X, ..., X ), X, = (x;1, ..., X;,) , and (X;, y,) is the ith data point.



How can we evaluate non-spuriousness and efficiency from data?



How can we identify PNS from data?
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Ay (a) High-dim. image data: (b) High-dim. text data: (c) Low-dim. data:
"-\ Y /" MNIST (Deng, 2012) Airline tweets Wine features

. PNSZ=Z,Y=y 2 PY(Z=2) =y, Y(Z+#7) #V)is a counterfactual (rung 3) quantity.

 Two main challenges: (1) PNS can not be identified exactly. It can only be bounded. We derive a (tight) lower bound of
PNSPNS,_.,_, > P(Y =y|do(Z= 7)) — P(Y = y | do(Z # 2))

 (2) Identifying P(Y = y|do(Z = 7)) with Z = f(X) often requires P(Y | X), which is challenging for high-dimensional X.



How can we identify PNS from data?

* |dentification (cont’d):
* (2) Identifying the intervention distributionP(Y = y | do(Z = 7))
» Functional interventions (Puli et al., 2020) P(Y = y |do(Z = 7)) = P(Y = y | do(f(X) = 2))

» Conditional on all parents of X, manipulate X such that f(X) = z
. PY=y|do(f(X)=12) = J'P(Yz yldo(X =x)P(X =x|f(X) =z, C)P(C)AC;

* Need to pinpoint the unobserved common cause C;
« High-dimensional X living on low dimensional manifold; restrict to subvectors of X

« Much of the technical development in CAUSAL-REP is for identifying P(Y = y | do(f(X) = z)) for high-dimensional X.
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What about unsupervised representation learning?

 We reduce unsupervised representation learning to a supervised problem of instance
discrimination.



Empirical Studies of CAUSAL-REP



We did lots of empirical studies in the paper

regression regression regression

(a) Amazon reviews (b) Tripadvisor reviews (c) Yelp reviews

Figure 7: CAUSAL-REP learns non-spurious representations across reviews text copura; its
predictive performance is stable across in-distribution and out-of-distribution test sets.

(b)

P learns non-spurious representations in colored MNIST
learning algorithms (e.g. directly fitting neural networks,
_ L , _rediction. (b) The performance of CAUSAL-REP is robust
to the choice of the latent dimensionality of probabilistic factor models. The dashed yellow line
indicates the theoretical maximum of ooD predictive accuracy. (Higher is better.)
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Empirical Studies on Colored MNIST Images
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* Training set: corr(color, label) is positive; Test set: corr(color, label) is negative.
 Randomly flip 25% of the labels in both training and testing.

« CAUSAL-REP finds non-spurious features even if we work with a single dataset; no multiple environments or data augmentation or invariance.



Empirical Studies on Text

Amazon CAUSAL-REP Logistic Regression

1 love_this_camera, recommend_this_camera, my_first_digital, am, an, also, as,
great, best_camera, camera_if you, this_camera_and, cam- love_my,
era_have, excellent_camera, camera_bought_this; the tractone,

2 this_camera, camera, camera_is, pictures, picture, the_camera, it real, which_is,
digital, camera_for, this_camera_is, digital _camera; too, so_much,

3 really nice, hold the, excellent_it, this _one_it, easy_it, is_so_much,
is_superb, nice_if, returning, too_low, you_need_more; which_is_pretty,

4 with_this, aa, took, came, yet, pictures_of, camera_in, computer, nokia, ear, home,
pictures_in, for_those; is_must, for_your,

5 camera_was, expect, the_photos, by, camera_are, blurry, sony, faster, must_for,

have an, had some, wife;

when use

« Amazon reviews corpus; Positive / negative ratings as binary labels
* |nject spurious words ‘am’, ‘an’, ‘also’, ‘as’ into positive reviews of the training set, but not test datasets.

« CAUSAL-REP finds non-spurious (and meaningful) features



Empirical Studies on Text
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CAUSAL-REP Logistic CAUSAL-REP Logistic CAUSAL-REP Logistic
regression regression regression
(a) Amazon reviews (b) Tripadvisor reviews (c) Yelp reviews

Figure 7: CAUSAL-REP learns non-spurious representations across reviews text copura; its
predictive performance is stable across in-distribution and out-of-distribution test sets.



Representation Learning: From Desiderata to Algorithms
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What is the definition of disentanglement?



What does “disentanglement” mean?

| Identity
bl Q > ' Color v/ (pose, color)
O . Pose x (pose + color, pose - color)
O‘

* Disentangled representations capture independently controllable factors of variation (FOVs).
 How to evaluate or enforce disentanglement without knowing ground truth features?

 We work with a single unsupervised dataset, without auxiliary labels or weak supervision.



What does “disentanglement” mean?

Q = (e)

\ l Identity /[/\
O l Pose
O

* Definition: Causal disentanglement (Suter et al., 2019)

A representation G = (G, ..., G,) is (causally) disentangled if G, ..., G, represent (possibly correlated)
factors of variation (FOVs) that do not causally affect each other.

 The absence of causal relationships among the FOVs G, ..., G, allows us to freely manipulate them.



How can we assess disentanglement from data?



How can we assess causal disentanglement?

 Absence of causal relationships among G, ..., G,

- This is an interventional distribution of G; on G

* ldentification: The causal relationships among Gl, Cees Gd can
be confounded by some unobserved C. Thus
P(G;| do(Gy; = g)) is non-identifiable from observational data

P(Gy, ..., G,). (Not all causal questions are answerable.)

o Still, we ask: how does the absence of causal relationships
relate to observational data? Are there any observable

implications of P(G; | do(G,;, = g.)) = P(G;), Vi, g,?



Observable implications of causal disentanglement

 Key observation: There does exist an observable implication of
causal disentanglement P(G; | do(Gy; = g)) = P(G), V], g on

the support of supp(G) £ 1{P(G) > 0} .

« Theorem. (Causal disentanglement = independent support)
Under the positivity condition P(G; | C) > 0iff P(G)) > 0, 'V,
no causal connections among Gy, ..., G, implies that

supp(G; | Gg) = supp(Gy), V), C {l,...,d}V,
supp(Gy, ..., G,) = supp(Gy) X --- X supp(G,).

 Intuition: Positivity implies that C cannot affect the support of

Gy, ..., G, If they do not affect each other, then their support
has to be independent.



Representations with independent support

- Independent support: supp(G; | Gg) = supp(G;), V), C {1,....d}y
Visually, the support of G, ..., G, must be (hyper-)rectangular.
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(a) Disentangled and uncorrelated (b) Disentangled but highly correlated (¢) Entangled but with low correlations



Quantifying disentanglement with the independence-of-support score (I10SS)

» Causal disentanglement = independent support supp(Gy, ..., G,) = supp(G;) X --- X supp(G,)

Corr=0.2514

* Independence-of-support-score (10SS): A disentanglement metric

10SS = dy(supp(Gy, ..., G,), supp(G;) X --- X supp(G,)), g
where C_?j — (Gj — 1nf Gj)/ (sup G; — inf GJ-) is the standardized G; and "~ entangle2

dy(X,Y) £ max sup inf d(x, y), sup inf d(x,y) p is the Hausdorff distance.
xeX yeY yeY xeX

 Disentangled representation learning with an 10SS penalty

* (Identifiability) If compact support, independent support is sufficient for enforcing disentanglement.



Independence-of-Support Score (I0SS)

» Causal disentanglement = independent support supp(Gy, ..., G,) = supp(G;) X --- X supp(G,)

* Independence-of-support-score (10SS): A disentanglement metric

Corr=0.2514

entangle3

entangle2

 Disentangled representation learning with an 10SS penalty

* |dentifiability: If compact support, independent support is sufficient for enforcing disentanglement.



|OSS: What just happened?
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Empirical Studies of |IOSS



Measure Disentanglement with 10SS

250 350
300 400
200
250
300
150 200
disentanglement disentanglement disentanglement
disentangled 150 disentangled 200 disentangled
100 entangled entangled entangled
100
50 100
50
0 0 0
0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 3 4 5 6 7 8 9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0SS Total Correlation Wasserstein Dependency

(a) 10ss (b) Total Correlation (c) Wasserstein Dependency

Figure 10: IOSS can better distinguish entangled and disentangled representations than existing
unsupervised disentanglement metrics on the mpi3d dataset.



Learning Disentangled Representations with I0SS
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Takeaways

* Many desiderata for representation learning can be formalized using causal notions.
* Non-spuriousness and efficiency (Supervised); Disentanglement (Unsupervised)

* They lead to metrics to measure how desirable the representations are, and algorithms that
directly target desired representations. (All derivations are from the first principles.)

* Empirical studies of CAUSAL-REP and I0OSS reveal possibilities of learning non-spurious/
disentangled representations without multiple environments/invariance/auxiliary labels.

* (Causal inference, though challenging in general, may be tractable in machine learning tasks.
(We define what success is :-)



Thank you!

* Y. Wang and M.l. Jordan
Desiderata for Representation Learning: A Causal Perspective
arXiv:2109.03795

o https://github.com/yixinwang/representation-causal-public



https://github.com/yixinwang/representation-causal-public

Non-spuriousness

Definition 1 (Non-spuriousness of representations). Suppose we observe a data point with repre-

sentation Z = z and label Y = y. Then the non-spuriousness of the representation Z for label Y is
the probability of sufficiency (ps) of I{Z = z} forI{Y = y}:

PSz—ry—y =PY(Z =2)=y|Z #2,Y #y). (1)

When both the representation Z and the label Y are univariate binary with z = 1,y = 1, then
Equation (1) coincides with classical definition of ps (Definition 9.2.2 of Pearl (2011)).



Efficiency

Definition 2 (Efficiency of representations). Suppose we observe a data point with representation
Z = z and label Y = y. Then the efficiency of the representation Z for the label Y is the probability
of necessity (pN) of I{ Z = z} forI{Y =y}~

PNZ:z,Y:y:P(Y(Z#z) #y‘Z:z7Y:y) (2)

When both the representation Z and the label Y are univariate binary with z = 1,y = 1, then
Equation (2) coincides with classical definition of PN (Definition 9.2.1 of Pearl (2011)).



Efficiency and Non-spurioushess

Definition 3 (Efficiency & non-spuriousness of representations). Suppose we observe a data point
with representation Z = z and label Y = y. Then the efficiency and non-spuriousness of the
representation Z for label Y is the probability of necessity and sufficiency (pNs) of I{Z = z} for

{Y = y}:
PNSz—,y—y =PY(Z #2) #y,Y(Z =2)=1y)). (3)

When both the representation Z and the label Y are univariate binary with z = 1,y = 1, then
Equation (3) coincides with classical definition of PNs (Definition 9.2.3 of Pearl (2011)).

Requiring both necessity and sufficiency of the cause is a stronger requirement than requiring only
necessity (or only sufficiency). Accordingly, PNs is a weighted combination of PN and ps,

PNSz_ry—y =P(Z =2Y =Y) PNg_y_y + P(Z # 2,Y #Y) - PSz_,y—y,



Conditional Efficiency and Non-spuriousness

Extension: Conditional efficiency and non-spuriousness. For multi-dimensional represen-
tations, one is often interested in the efficiency and non-spuriousness of each of its dimensions.
We expect each dimension of the representation to be efficient and non-spurious conditional on

all other dimensions.

We thus extend Definition 3 to formalize a notion of conditional efficiency and non-spuriousness.
Consider a d-dimensional representation Z = (Z1,...,Z3) = (f1(X), ..., fa(X)). The condi-
tional efficiency and non-spuriousness of the jth dimension Z; for data point (x;, y;) is

PNSZ, =z Y=yi | Zj=2;,—; = L (Y (Zj # 2ij, Z—j = Zi—j) # Y, Y (Zj = 2ij, Z—j = Zi—j) = i),

(5)
where z;; = f;j(x;) is the jth dimension of the representation, and z; _; = (zij)jef1, .. a1\
Accordingly, the conditional efficiency and non-spuriousness of Z; across all n data points is

n
PNs, (2, Y | Z ) 2 | [ oNs 2oz voy 22, (6)

1=1



How do we maximize PNS?

Lemma 4 (A lower bound on PNS). Assuming the causal graph in Figure 2, the PNs is lower bounded
by the difference between two intervention distributions:

PNSZ_—»Y—y = P(Y(Z — Z) =Y, Y(Z 7é Z) 7£ y)

> P(Y =y|do(Z = 2)) = P(Y =y|do(Z # 2)). )

The inequality becomes an equality when the outcome Y is monotone in the representation Z (in the
binary sense); i.e., P(Y(Z =2z) #vy,Y(Z # z) =y) =0.



How do we maximize PNS?
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» Identifying the intervention distribution P(Y = y | do(Z = 7))
» Functional interventions P(Y = y|do(Z = 7)) = P(Y = y| do(f(X) = 2))

 Conditional on all parents of X, manipulate X such that f(X) = z
. PY=y|do(f(X)=2) = JP(Yz y|ldo(X =x)P(X = x| f(X) =2z, C)P(C)dC;

* Need to pinpoint the unobserved common cause C;

e High-dimensional X living on low dimensional manifold; restrict to subvectors of X
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Definition 5 (Functional interventions (Puli et al., 2020)). The intervention distribution under a
functional intervention P(Y | do(f(X) = z)) is defined as

P(Y | do(f(X) = 2)) 2 / P(Y |do(X),C)P(X | C, f(X) = 2)P(C)dX dC,  (8)

where C denotes all parents of X.

Following this definition, one can write the intervention distribution of interest, P(Y | do( f(X)
z)), as follows:

P(Y |do(f(X) = 2)) = / PY|X)- | / P(X|C, f(X) = z)P(C)dC| dX. ()

This equality is due to the scMm in Figure 2: there is no unobserved confounding between X and
Y, which implies P(Y |do(X),C) = P(Y | X).



How do we maximize PNS?

(a) High-dim. image data: (b) High-dim. text data: (c) Low-dim. data:
MNIST (Deng, 2012) Airline tweets Wine features

As a more concrete example, consider a high-dimensional vector of image pixels X that lives
on a low-dimensional manifold; i.e., such that X; — go({ X1, . . ., Xin }\X}) is identically zero in
the observational data (Goodfellow et al., 2014; Kingma & Welling, 2014). This rank degeneracy

implies that for any p(y | £) = ho(a@, y) compatible with the observational data distribution, the

conditional p(y | x) = ho(z,y) + - (x; — go({x1,- . -, Tm }\Z;)), Vo € R, is also compatible with
the observational data.
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Causal identification of P(Y |do(f(X)) for arestricted set of f. Given the fundamental non-
identifiability of P(Y | X') with high-dimensional X = (X 1,+-+,Xm), We restrict our attention
to representations that only nontrivially depends on a “full- rank subset; ie., Z = f(X) =
f((X;);es), for some function f : X151 — R? and aset S C {1,...,m}, Where p((z;)jes) >0
for all values (z;)cs € X!°l. We term this requirement observablhty.”

Focusing on such representations f(X) = f((X;);cs), we calculate its intervention distributions
by returning to the definition of functional interventions (Definition 5),

P(Y |do(f(X) = 2)) = [ P(Y|(X,)se5, C)P((X,)ses| €, £(X) = 2) P(C)d(X))jes dC.



How do we maximize PNS?

Lemma 6 (Identification of P(Y |do(f(X) = z)). Assume the causal graph in Figure 2. Suppose
the representation only effectively depends on a subset (X;);cs of (Xl, o, X)) e, f(X) =
f((X;);es) for some function f : XIS — R% and some set S C {1,...,m}. Then the intervention
distribution P(Y | do(f(X) = z)) is identifiable by

P(Y | do(f(X) = z)) = / P(Y|f(X) = z, k(X)) - P(h(X))dh(X),  (12)

if the following conditions are satisfied:

1. (pinpointability) the unobserved common cause C'is pinpointable; i.e., P(C'| X') = 0p(x) for
a deterministic function h known up to bijective transformations,

2. (posztzvzty)( ;i) jes satisfies the positivity condition given C’ i.e., P((X;)jes € X C) >0
for any set X C X'5! such that P((X,)jes € X) > 0,

3. (observability) P((X,)jecs € X ) > (0 for all subsets X C X5 with a positive measure.



Causal Disentanglement = Independent Support

Theorem 9 (Disentanglement = Independent support). Assume the unobserved common cause C
satisfies a positivity condition: for all j, we have P(Z; | C) > 0 iff P(Z;) > 0. Then the support of
the interventional distribution coincides with that of the observational distribution:

supp(Z; | do(Zj = zy)) = supp(Z; | Zj = zy), (41)
where j,j' € {1,...,d}, j # j', and the density at z; is nonzero, p(z;) > 0. As a consequence,
different dimensions of a disentangled representation Z = (Z1,. .., Z3) must have independent
support:

supp(Z1, . .., Za) = supp(Z1) X - - - X supp(Zy), (42)

supp(Z; | Zs) = supp(Z;) forall S C {1,...,d}\J.



Independence-of-Support Score (I0SS)

Definition 10 (Independence-of-support score (10ss)). Suppose a representation Z has bounded
supportandsup Z; — int Z; > 0,7 = 1,...,d. Then the 10ss of Z is the Hausdorff distance
between the joint support of (Z1, ..., Z;) and the product of each individual’s support:

IOSS(Zl, Ce ey Zd)
= du(supp(Z, . .., Za), supp(Z1) X - - - supp(
= d(supp(Z1) X - - - supp(Za), supp(Za, .. ., Zg

where Z; = (Z; — inf Z;) /(sup Z; — inf Z;) is the standardized Z;, and dy (-, -) is the Hausdorff
distance.” The second equality is due to supp(Z., ..., Zq) C supp(Z1) X - -+ X supp(Zy).



Identifiability of Representations with Independent Support

Theorem 11 (Identifiability of representations with independent support). Among all compactly
supported representations (i.e. the support being a closed and bounded region) that generate the same

o-algebra, the representation with independent support (if exists) is identifiable up to permutation and
coordinate-wise bijective transformations: for any two d-dimensional representations, Z = f(X) =
(Z1,...,2Zy) and Z' = f'(X) = (Z1,...,Z)), such that (1) f, f' are continuous, (2)o(Z) = o(Z"),
(3) Z, Z' both satisfy the independent support condition (Equation (42)), and (3) Z, Z' both have
compact support in R%, we have

Z17 JUR Zd — perm(ql(zi)a .o 7qd(Zc/i))7

where the q; are continuous bijective function with a compact domain inR. (The proofis in Appendix §.)



Identifiability of Representations with Independent Support

To understand the intuition behind Theorem 11, we consider a toy example of a two-dimensional
compactly supported representation (Z, Z5) with independent support: Z; € [1, 2|, Z; € |0, 2|.
Next consider an entanglement of this representation (Z7, Z), which is a bijective transformation
of (Z 1, ZQ)Z

7! =7y + 2y,  ZL=T74— Zs.

We will show that (77, Z;) does not have independent support, then the support of Z; — Z;
depends on the value of Z; + Z,. To see why, consider the case when Z; + Zs = 4, then we must
have Z; = Zs = 2 due to the support constraints on Z;, Zs. Hence Z; — Z5 = 0, thus the support
of Z1 — Z, is {0}. Following a similar argument, the support of Z; — Z5 is {1} when Z; + Z; = 1.

Therefore, the support of Z; — Z5 depends on values of Z; 4+ Z5, and hence they have dependent
support.



