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Summary

Weighting methods are widely used to adjust for covariates in observational studies, sample
surveys, and regression settings. In this paper, we study a class of recently proposed weighting
methods, which find the weights of minimum dispersion that approximately balance the covari-
ates. We call these weights ‘minimal weights’ and study them under a common optimization
framework. Our key observation is that finding weights which achieve approximate covariate
balance is equivalent to performing shrinkage estimation of the inverse propensity score. This
connection leads to both theoretical and practical developments. From a theoretical standpoint,
we characterize the asymptotic properties of minimal weights and show that, under standard
smoothness conditions on the propensity score function, minimal weights are consistent esti-
mates of the true inverse probability weights. In addition, we show that the resulting weighting
estimator is consistent, asymptotically normal and semiparametrically efficient. From a practical
standpoint, we give a finite-sample oracle inequality that bounds the loss incurred by balancing
more functions of the covariates than strictly needed. This inequality shows that minimal weights
implicitly bound the number of active covariate balance constraints. Finally, we provide a tuning
algorithm for choosing the degree of approximate balance in minimal weights. The paper con-
cludes with an empirical study which suggests that approximate balance is preferable to exact
balance, especially when there is limited overlap in covariate distributions. Further studies show
that the root mean squared error of the weighting estimator can be reduced by as much as a half
with approximate balance.

Some key words: Causal inference; Missing data; Observational study; Sample survey; Weighting.

1. Introduction

1.1. Weighting methods for covariate adjustment

Weighting methods are widely used to adjust for observed covariates, for example in observa-
tional studies of causal effects (Rosenbaum, 1987), in sample surveys and panel data with unit
nonresponse (Robins et al., 1994), and in regression settings with missing and/or mismeasured
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94 Y. Wang AND J. R. Zubizarreta

covariates (Hirano et al., 2003). Weighting methods are popular because they do not require
explicit modelling of the outcome (Rosenbaum, 1987). As a result, they are part of the design
stage as opposed to the analysis stage of the study (Rubin, 2008), which helps to maintain the
objectivity of the study and preserve the validity of its tests (Rosenbaum, 2010). Furthermore,
weighting methods are considered to be multipurpose in the sense that one set of weights can be
used to estimate the mean of multiple outcomes (Little & Rubin, 2014).

Conventionally, the weights are estimated by modelling the propensities of receiving treat-
ment or exhibiting missingness and then inverting the predicted propensities. However, with
this approach it can be difficult to properly adjust for or balance the observed covariates, as the
covariates are balanced only in expectation by the law of large numbers. In any particular dataset
it may be difficult to balance covariates, especially if the dataset is small or the covariates are
sparse (Zubizarreta et al., 2011). In addition, this approach can result in very unstable estimates
when a few observations have very large weights (e.g., Kang & Schafer, 2007). To address these
problems, a number of methods have been proposed recently. Instead of explicitly modelling the
propensities of treatment or missingness, these methods directly balance the covariates. Some of
them also minimize a measure of dispersion of the weights. Examples include the methods of
Hainmueller (2012), Zubizarreta (2015), Chan et al. (2016), Zhao & Percival (2017), Wong &
Chan (2018) and Zhao (2019). Earlier and related methods include those of Deville & Särndal
(1992), Hellerstein & Imbens (1999), Imai & Ratkovic (2014) and Li et al. (2018). Two promising
approaches that use similar weights together with outcome information are the ones proposed by
Athey et al. (2018) and Hirshberg & Wager (2019). SeeYiu & Su (2018) for a framework for con-
structing weights such that the association between the covariates and the treatment assignment
is eliminated after weighting.

Most of these weighting methods balance covariates exactly rather than approximately. This
is a subtle but important difference, because approximate balance can trade bias for variance,
whereas exact balance cannot. Also, exact balance may not admit a solution while approximate
balance may do so. For a fixed sample size, approximate balance may balance more functions of
the covariates than exact balance.

In this paper, we study the class of weights of minimum dispersion that approximately balance
the covariates. We call these weights minimal dispersion approximately balancing weights, or
simply minimal weights. While it has been shown that instances of minimal weights work well
in practice in both low- and high-dimensional settings (e.g., Zubizarreta, 2015; Athey et al.,
2018; Hirshberg & Wager, 2019), and valuable theoretical results have been established (e.g.,
Athey et al., 2018; Hirshberg & Wager, 2019; Wong & Chan, 2018), important aspects of their
theoretical properties and practical usage remain to be studied.

1.2. Theoretical properties and practical considerations of minimal weights

In this paper we study the class of minimal weights. The key observation is the connection
between approximate covariate balance and shrinkage estimation of the inverse propensity score.
This connection leads to both theoretical and practical developments.

From a theoretical standpoint, we first establish a connection between minimal weights and
shrinkage estimation of the propensity score. We show that the dual of the minimal weights
optimization problem is similar to parameter estimation in generalized linear models under �1
regularization. This connection allows us to establish the asymptotic properties of minimal
weights by leveraging results on propensity score estimation. In particular, we show that under
standard smoothness conditions, minimal weights are consistent estimates of the true inverse
probability weights in both the �2- and the �∞-norms.
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Minimal dispersion approximately balancing weights 95

Next, we study the asymptotic properties of a linear estimator based on minimal weights. We
show that the weighting estimator is consistent, asymptotically normal and semiparametrically
efficient. This result is related to the work of Chan et al. (2016), Fan et al. (2016), Zhao & Percival
(2017) and Zhao (2019) in that it establishes the asymptotic optimality of a similar weighting
estimator. It differs, however, in that it encompasses both approximate balance and exact balance.
The technical conditions required by our result are among the weakest in the literature; they are
considerably weaker than those required by Hirano et al. (2003) and Chan et al. (2016), and are
comparable to those in Fan et al. (2016).

From a practical standpoint, we address two problems related to minimal weights: choosing
the number of basis functions and selecting the degree of approximate balance. We derive a
finite-sample upper bound for the potential loss incurred by balancing too many basis functions
of the covariates. This result shows that the loss due to balancing too many basis functions is
hedged by minimal weights because the number of active balancing constraints is implicitly
bounded.

Finally, we provide a tuning algorithm for calibrating the degree of approximate balance
in minimal weights. This is a general problem in weighting and so this algorithm may be of
independent interest. We conclude with four empirical studies which suggest that approximate
balance is preferable to exact balance, especially when there is limited overlap in covariate
distributions. These studies show that use of approximate balancing weights with the proposed
tuning algorithm yields weighting estimators with considerably lower root mean squared error
than their exact balancing counterparts.

2. A shrinkage estimation view of minimal weights

For simplicity of exposition, we focus on the problem of estimating a population mean from
a sample with incomplete outcome data. We assume that the outcomes are missing at random
(Little & Rubin, 2014). Under the closely related assumption of strong ignorability (Rosenbaum
& Rubin, 1983), this problem is analogous to estimating an average treatment effect in an obser-
vational study. See Kang & Schafer (2007) for an example connecting the problems of causal
inference and estimation with incomplete outcome data.

Consider a random sample of n units from a population of interest, where some of the units in
the sample are missing due to nonresponse. Let Zi be the response indicator such that Zi = 1 if
unit i responds and Zi = 0 otherwise, for i = 1, . . . , n. Write r for the total number of respondents.
Denote by Xi the vector of observed covariates and Yi the outcome of unit i.

Assume there is overlap; that is, the propensity score π(x) = pr(Z = 1 | X = x) satisfies
0 < π(x) < 1. Furthermore, assume that the responses are missing at random. This assumption
says that missingness can be fully explained by the observed covariates: Yi ⊥⊥ Zi | Xi (Robins &
Gill, 1997).

The goal is to estimate the population mean of the outcome, Ȳ = E(Yi). We use the linear
estimator Ŷw = ∑n

i=1 wiZiYi for estimation, where the weights wi adjust for or balance the
observed covariates.

Conventionally, the weights wi are obtained by fitting a model for the propensity score π(x)
and then inverting the predicted propensities. Despite being widely used, this approach has two
problems in practice: first, balancing the covariates can be difficult due to misspecification of the
propensity score model, if the sample size is small or if the covariates are sparse; second, the
weighting estimator can be unstable due to the variability of the weights (see, e.g., Zubizarreta
2015 for a discussion).
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96 Y. Wang AND J. R. Zubizarreta

To address these problems, several weighting methods have been proposed recently. These
methods are encompassed by the following mathematical program:

minimize
w

n∑
i=1

Zif (wi) (1)

subject to

∣∣∣∣∣
n∑

i=1

wiZiBk(Xi) − 1

n

n∑
i=1

Bk(Xi)

∣∣∣∣∣ � δk (k = 1, . . . , K), (2)

where f is a convex function of the weights and Bk(Xi) (k = 1, . . . , K) are smooth functions
of the covariates. Typically, the functions Bk are basis functions for E(Yi) and are chosen as
the moments of the covariate distributions, see Assumption 1 parts (iv) and (vi) below. Other
common choices of Bk include spline bases (De Boor, 1972) and wavelet bases (Singh & Tiwari,
2006). The constants δk constrain the imbalances in Bk . They are summarized in the vector
δK×1 = (δ1, . . . , δK ) � 0. In (2) we can also constrain the weights to sum to unity,

∑n
i=1 wi = 1,

and to take positive values, 0 � wi (i = 1, . . . , n). These two constraints together ensure that
the weights do not extrapolate; that is, 0 � wi � 1 (i = 1, . . . , n). This is related to the sample
boundedness property discussed in Robins et al. (2007), which requires the estimator to lie within
the range of observed values of the outcome.

We call the class of weights that solve the above mathematical program minimal dispersion
approximately balancing weights, or simply minimal weights. They have minimal dispersion
because they explicitly minimize a measure of dispersion or extremity of the weights. They are
approximate balancing weights because they have the flexibility to approximately, as opposed to
exactly, balance covariates. This flexibility plays an important role in practice by trading bias for
variance.

Special cases of minimal weights are the entropy balancing weights (Hainmueller, 2012) with
f (x) = x log x and δ = 0, the stable balancing weights (Zubizarreta, 2015) with f (x) = (x−1/r)2

and δ ∈ R
+
0 , and the empirical balancing calibration weights (Chan et al., 2016) with f (x) =

D(x, 1) and δ = 0, where D(x, x0) is a distance measure for a fixed x0 ∈ R that is continuously
differentiable in x0 ∈ R, nonnegative and strictly convex in x. With the exception of the stable
balancing weights, these methods balance the covariates exactly by taking δ = 0 and assuming
that the optimization problem is feasible. Related methods that balance covariates approximately
through a Lagrange relaxation of the balance constraints include those of Kallus (2017), Athey
et al. (2018), Hirshberg & Wager (2019), Wong & Chan (2018) and Zhao (2019).

The dynamics between the feasibility and the efficacy of covariate balancing constraints are
central to estimation with incomplete outcome data. Tightening these constraints could make the
optimization program infeasible, but relaxing them could compromise the removal of biases due
to covariate imbalances.

Studying these dynamics, however, calls for an alternative formulation of problem (1)–(2)
with a solution that is easier to characterize. Theorem 1 provides such a formulation. It expresses
the dual problem of (1)–(2) as an unconstrained problem by leveraging the structure of minimal
weights. Since problem (1)–(2) is convex, its optimal solution and the solution to the dual problem
will be the same (Boyd & Vandenberghe, 2004). Dual formulations of balancing procedures have
been studied by Zhao & Percival (2017) and Zhao (2019). Theorem 1 helps us to articulate the
role of approximate balance constraints.

The dual formulation in Theorem 1 establishes a connection between minimal weights and
shrinkage estimation of the propensity score. At a high level, minimal weights are implicitly
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Minimal dispersion approximately balancing weights 97

fitting a model for the inverse propensity score with �1 regularization; the model is a generalized
linear model on Bk(·), the basis functions of the covariates.

Theorem 1. The dual of problem (1)–(2) is equivalent to the unconstrained optimization
problem

minimize
λ

1

n

n∑
j=1

[−Zjnρ{B(Xj)
Tλ} + B(Xj)

Tλ
] + |λ|Tδ, (3)

where λK×1 is the vector of dual variables associated with the K balancing constraints and
B(Xj) = {B1(Xj), . . . , BK (Xj)} denotes the K basis functions of the covariates, with ρ(t) =
t/n− t(h′)−1(t)+h{(h′)−1(t)} and h(x) = f (1/n−x). Moreover, the primal solution w∗

j satisfies

w∗
j = ρ′{B(Xj)

Tλ†} (j = 1, . . . , n),

where λ† is the solution to the dual optimization problem.

The proof is given in the Supplementary Material. The key to this result is the form of the
constraints in (2). These box constraints allow us to eliminate the positivity constraints on the
dual variables after a change of variables.

In Theorem 1, the function ρ(·) is a transformation of the measure of dispersion of the weights
f (·) in (1). For example, when f (x) = x log x, as in the entropy balancing weights (Hainmueller,
2012), we have ρ(x) = − exp(−x − 1) and ρ′(x) = exp(−x − 1), which implies a propensity
score model of the form π(x) = exp{B(x)Tλ + 1}; and when f (x) = (x − 1/r)2, as in the stable
balancing weights (Zubizarreta, 2015), we have ρ(x) = −x2/4 + x/r and ρ′(x) = −x/2 + 1/r,
which implies π(x) = {1/r − B(x)Tλ/2}−1. At a high level, the function ρ′ can be seen as a link
function in generalized linear models. With specific choices of ρ′, (3) resembles a regularized
version of the tailored loss function approach in Zhao (2019).

Problem (3) comes down to �1 shrinkage estimation. The inverse propensity score function
is estimated as a generalized linear model on the basis functions B with link function ρ′. The
dual variables in λ can be seen as the coefficients of the basis functions in the propensity score
regression model. Estimation is regularized by the weighted �1-norm of the coefficients in λ. The
loss function is

L(λ) = −Znρ{B(x)Tλ} + B(x)Tλ. (4)

The expectation of this loss function is minimized when λ satisfies {nπ(x)}−1 = ρ′{B(x)Tλ} =
w∗. This is the key equation connecting minimal weights to the propensity score π(x).

Theorem 1 says that if the propensity score depends heavily on a given covariate, then problem
(1)–(2) will try hard to balance this covariate by assigning it a large dual variable. The dual
variables in λ can be interpreted as shadow prices of the covariate balance constraints (see Boyd
& Vandenberghe, 2004, § 5.6). If a constraint has a high shadow price, then relaxing it a little
will result in a large reduction in the optimization objective, and vice versa. On the other hand,
the �1 penalty decreases the dependence of the weights on covariates that are hard to balance.

Theorem 1 is related to the dual formulation of covariate balancing scoring rules under regular-
ization (Zhao, 2019). The two results have similarities, but differ in their objectives: here we use
the dual formulation of problem (1)–(2) to analyse the asymptotic and finite-sample properties
of minimal weights (see § 3 and § 4.1), whereas Zhao (2019) uses a related dual formulation to
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98 Y. Wang AND J. R. Zubizarreta

show that increased regularization in covariate balancing scoring rules can deteriorate covariate
balance.

3. Asymptotic properties

Theorem 1 connects minimal weights to shrinkage estimation of the inverse propensity score
function. In this section, we leverage this connection to characterize the asymptotic properties
of minimal weights. We assume the following conditions and prove that minimal weights are
consistent estimates of the inverse propensity score function 1/π(x).

Assumption 1. The following conditions hold:
(i) the minimizer λ◦ = arg minλ∈� E[−Znρ{B(Xi)

Tλ} + B(Xi)
Tλ] is unique, where � is the

parameter space for λ;
(ii) λ◦ ∈ int(�), where � is a compact set and int(·) stands for the interior of a set;

(iii) there exists a constant 0 < c0 < 1/2 such that c0 � nρ′(v) � 1 − c0 for any v = B(x)Tλ

with λ ∈ int(�); also, there exist constants c1 < c2 < 0 such that c1 � nρ′′(v) � c2 < 0
in some small neighbourhood B of v∗ = B(x)Tλ†;

(iv) there exists a constant C such that supx∈X ‖B(x)‖2 � CK1/2 and E{B(Xi)B(Xi)
T} � C;

(v) the number of basis functions K satisfies K = o(n);
(vi) there exist constants rπ > 1 and λ∗

1 such that the true propensity score function satisfies
supx∈X |m∗(x) − B(x)Tλ∗

1| = O(K−rπ ) where m∗(·) = (ρ′)−1[1/{nπ(x)}];
(vii) ‖δ‖2 = Op{K1/2(log K)/n + K1/2−rπ }.

InAssumption 1, (i) and (ii) are standard regularity conditions for consistency of minimum risk
estimators. Condition (iii) makes it possible for consistency of λ† to be translated into consistency
of the weights. In particular, the fact that ρ′′ is bounded implies that the derivative of the inverse
propensity score function is bounded. This condition is satisfied by common choices of f in
problem (1)–(2), including the variance, the mean absolute deviation and the negative entropy of
the weights. Condition (iv) is a standard technical assumption that restricts the magnitude of the
basis functions; see also Assumption 4.1.6 of Fan et al. (2016) and Assumption 2(ii) of Newey
(1997). This condition is satisfied by many classes of basis functions, including the regression
spline bases, trigonometric polynomial bases and wavelet bases (Newey, 1997; Horowitz &
Mammen, 2004; Chen, 2007; Belloni et al., 2015; Fan et al., 2016). Condition (v) controls the
growth rate of the number of basis functions relative to the number of units. Condition (vi) is a
uniform approximation condition on the inverse propensity score function. It requires the basis
B(x) to be complete or m∗(x) to be well approximated by a linear model on B(x). For splines
and power series, this assumption is satisfied by rπ = s/d, where s is the number of continuous
derivatives of m∗(·) that exist and d is the dimension of x with a compact domain (Newey, 1997).
Condition (vii) quantifies the extent to which the equality covariate balancing constraints can be
relaxed such that the consistency of the resulting weight estimates is maintained.

Under these assumptions, we can prove that minimal weights are consistent for the inverse
propensity score function.

Theorem 2. Let λ† be the solution to (1)–(2) and w∗(x) = ρ′{B(x)Tλ†}. Then, under the
conditions in Assumption 1, we have:

(i) supx∈X |nw∗(x) − 1/π(x)| = Op{K(log K)/n + K1−rπ } = op(1);
(ii) ‖nw∗(x) − 1/π(x)‖P, 2 = Op{K(log K)/n + K1−rπ } = op(1).
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Minimal dispersion approximately balancing weights 99

The proof, given in the Supplementary Material, consists of two steps. First we show that λ†,
the solution to the dual problem, is close to λ∗

1 in the �2-norm. Consistency of the weights then
follows from the Lipschitz property of ρ′ and the bounds on the basis functions in Assumption 1.
In the special case of exact balance (δ = 0), Theorem 2 is related to a result in Fan et al. (2016,
Appendix D, p. 46). This connection stems from Theorem 1, as minimal weights are estimating
the inverse propensity score.

We now assume the following additional conditions and prove that the resulting weighting
estimator is consistent and semiparametrically efficient for the mean outcome.

Assumption 2. The following conditions hold:
(i) E{|Yi − Y (Xi)|} < ∞, where Y (x) = E(Yi | X = x);

(ii) E(Y 2
i ) < ∞, where Ȳ = E(Yi) is the population mean of the outcome;

(iii) there exist ry > 1/2 and λ∗
2 such that the outcome model Y (x) = E(Yi | X = x) satisfies

supx∈X |Y (x) − B(x)Tλ∗
2| = O(K−ry);

(iv) m∗(·) ∈ M and Y (·) ∈ H, where m∗(·) = (ρ′)−1[1/{nπ(x)}], Y (·) is the mean outcome
function, and M and H are two sets of smooth functions satisfying log n[ ]{ε, M, L2(P)} �
C(1/ε)1/k1 and log n[ ]{ε, H, L2(P)} � C(1/ε)1/k2 for a positive constant C and k1, k2 >

1/2, with n[ ]{ε, S, L2(P)} denoting the covering number of the set S by ε-brackets;
(v) n0.5(rπ+ry−0.5)−1 = o(K).

In Assumption 2, (i) and (ii) are standard regularity conditions which ensure that the estimators
have finite moments, and (iii) is a uniform approximation condition similar to Assumption 1(vi),
but on the mean outcome function Y (x) = E(Y | X = x). Condition (iv) requires that the
complexity of the function classes M and H do not increase too quickly as ε approaches zero.
This assumption is satisfied, for example, by the Hölder class with smoothness parameter s
defined on a bounded convex subset of R

d with s/d > 1/2 (van der Vaart & Wellner, 1996;
Fan et al., 2016); see also Assumption 4.1.7 in Fan et al. (2016). Condition (v) controls the rate
at which K can increase with respect to n. In particular, the rate depends on the sum of rπ and
ry, the approximation errors of the propensity score and outcome functions, respectively. This
assumption relates to the product structure of error bounding in doubly robust estimation; see,
for example, Kennedy (2016, equation (41)).

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then

n1/2(Ŷw∗ − Ȳ ) d−→N (0, Vopt)

in distribution, where Vopt = var{Y (Xi)}+E{var(Yi | Xi)/π(Xi)} is the semiparametric efficiency
bound. If, in addition, ry > 1, then the estimator

V̂K = 1

n

n∑
i=1

[
nZiwiYi −

n∑
i=1

wiYi

− B(Xi)
T

{
1

n

n∑
i=1

ZiwiB(Xi)
TB(Xi)

}−1 {
1

n

n∑
i=1

ZiwiB(Xi)
TYi

}
(nZiwi − 1)

]2

is a consistent estimator of the asymptotic variance Vopt.

The proof can be found in the Supplementary Material. It uses empirical process techniques
as in Fan et al. (2016) and involves the standard decomposition of Ŷw∗ − Ȳ into four components,
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100 Y. Wang AND J. R. Zubizarreta

where three of them converge to zero in probability and the fourth is asymptotically normal
and semiparametrically efficient. Each of the first three components can be controlled by the
bracketing numbers of the function classes to which the inverse propensity score function and
the outcome function belong. Assumption 2(ii) provides this control.

We conclude this section on asymptotic properties with a discussion of the uniform approxi-
mability conditions, Assumption 1(vi) and Assumption 2(iii). These assumptions depend both on
the smoothness of the propensity score and outcome functions, and on the dimension d of the
covariates. Suppose the propensity score and outcome functions both belong to the Hölder class
with smoothness parameter s on the domain [0, 1]d . Assumption 1(vi) and Assumption 2(iii) are
among the weakest in the literature, as they require only s/d > 1 for the propensity score function
and s/d > 1/2 for the outcome function. They are weaker than the assumptions in Hirano et al.
(2003), which require s/d > 7 for the propensity score function and s/d > 1 for the outcome
function, as well as those in Chan et al. (2016), which require s/d > 13 for the propensity score
function and s/d > 3/2 for the outcome function. They are comparable to the conditions in Fan
et al. (2016), which require s/d > 1/2 for the propensity score function and s/d > 1/2 for the
outcome function, plus the requirement that the sum of these two ratios do not exceed 3/2. To
establish these results under weak assumptions, we use Bernstein’s inequality as in Fan et al.
(2016) and leverage the particular structure of minimal weights.

4. Practical considerations

4.1. The loss due to balancing too many functions of the covariates is bounded

An important question that arises in practice relates to the cost of balancing too many basis
functions of the covariates. In other words, practitioners are concerned about how big the loss will
be if they balance more basis functions than needed. This is a valid concern because Theorem 1
implies that, for each basis function Bk we balance, we are implicitly including a similar term in
the inverse propensity score model. Therefore, balancing too many basis functions could result in
estimation loss due to fitting an overly complex model. The following oracle inequality provides
reassurance by showing that this loss is bounded.

Theorem 4. Let λ† be the solution to the dual of the minimal weights problem (3), and let
λ‡ be the solution to the dual of the exact balancing weights problem with the number of active
constraints ‖λ‡‖0 capped by some constant C0 > 0. Then, under suitable technical conditions,

E{L(λ†) − L(λ∗
1)} � 3E{L(λ‡) − L(λ∗

1)} + c0‖λ‡‖0,

where λ∗
1 is the oracle solution as in Assumption 1(vi), L(·) is the dual loss as in (4), and c0 is a

positive constant depending on the number of basis functions K.

See the Supplementary Material for technical details. This oracle inequality bounds E{L(λ†)−
L(λ∗

1)}, the excess risk of the minimal weights estimator relative to the oracle estimator λ∗
1. The

optimal dual loss L(λ) is equal to the optimal primal loss
∑n

i=1 Zif (wi) in (1), because the
optimization problem (1)–(2) is convex. A smaller excess risk translates into a smaller estimation
error of the causal effect estimator.

This inequality compares the linear weighted estimator with two versions of minimal weights:
one with approximate balance and the other with exact balance. The exact balancing version caps
the number of exact balancing constraints at C0. The inequality shows that the two estimators
have similar risks.
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Minimal dispersion approximately balancing weights 101

More specifically, when there are few active covariate balancing constraints, ‖λ‡‖0 will be
small. The inequality then says that the excess risk of approximate balancing in minimal weights
is of the same order as the excess risk of exact balancing with its number of balancing constraints
capped. Therefore, balancing covariates approximately can be seen as implicitly capping the
number of active balancing constraints.

At a high level, this oracle inequality bounds the loss of balancing too many func-
tions of the covariates with minimal weights. Fundamentally, the approximate balancing
constraints in problem (1)–(2) are performing �1 regularization in the inverse propensity
score estimation problem. This sparse behaviour of the balancing constraints is common in
practice; for example, it can be seen in the 2010 Chilean post-earthquake survey data of
Zubizarreta (2015, Fig. 1).

4.2. A tuning algorithm for choosing the degree of approximate balance δ

Another practical question that arises with minimal weights is how to choose the degree of
approximate balance δ. Similar to the regularization parameter accompanying the �1-norm in
lasso estimation, δ is a tuning parameter that the investigator needs to choose. In our setting,
choosing δ is particularly hard; since there are no outcomes, there is not a clear out-of-sample
target to optimize toward. For choosing δ, we propose Algorithm 1.

Algorithm 1. Choosing δ in minimal weights.

For each δ in a grid D ⊂ [0, K−1/2] of candidate imbalances
Compute {wi}n

i=1 by solving problem (1)
For each j ∈ {1, ..., J }

Draw a bootstrap sample Sj from the original data
Evaluate covariate balance Cj on the sample Sj,

Cj := ∑K
k=1 ||{∑i∈Sj

wiZiBk(Xi)}/(∑i∈Sj
wiZi) − ∑n

i=1 Bk(Xi)/n||2/sd{Bk(X )}
Compute the mean covariate balance, C̄(δ) := ∑J

j=1 Cj/J
Output δ∗ = arg minδ∈D C̄(δ)

The key idea behind Algorithm 1 is to use the covariate balance in the bootstrapped samples
as a proxy for how well the target parameters are estimated. The intuition is that in theory the
true inverse propensity score weights will balance the population as well as samples from the
population. Therefore, if the weights are well calibrated and robust to sampling variation, they will
have this same property. To this end, we evaluate the covariate balance on bootstrapped samples
CS with the weights computed from the original dataset. In the following subsection, we show
that the value of δ selected by Algorithm 1 often coincides with or is close to the optimal δ that
gives the smallest root mean squared error in estimating the target parameters. We recommend
choosing values of δ smaller than K−1/2, because larger values are likely to violate the conditions
in Assumption 1.

4.3. Empirical studies

We illustrate the performance of minimal weights in four empirical studies. In these four studies
we choose δ with Algorithm 1 and consider three dispersion measures of the weights: the sum
of absolute deviations, f (w) = |w − w̄|; the variance, f (w) = (w − 1/r)2 (Zubizarreta, 2015);
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Table 1. Root mean squared error for (a) the average treatment effect and (b) the average treatment
effect on the treated. The lowest error for each measure of dispersion is shown in italics; a
hyphen indicates that exact balancing does not admit a solution. In the case of bad overlap,
balancing covariates approximately reduces the error of the average treatment effect on the treated

by a half compared to exact balance
(a) Good overlap Bad overlap

Dispersion Exact Approx. Exact Approx.
Abs. Dev. 0.19 0.18 — 0.27
Variance 0.16 0.17 — 0.26
Neg. Ent. 0.16 0.16 — 0.27

(b) Good overlap Bad overlap
Dispersion Exact Approx. Exact Approx.
Abs. Dev. 0.10 0.10 0.24 0.08
Variance 0.09 0.09 0.18 0.07
Neg. Ent. 0.10 0.09 0.20 0.10

Approx., approximate balancing; Abs. Dev., sum of absolute deviations; Neg. Ent., negative entropy.

and the negative entropy, f (w) = w log w (Hainmueller, 2012). We find that minimal weights
with approximate balance admit a solution in cases where exact balance does not. Approximate
balancing also achieves considerably lower root mean squared error than exact balancing when
there is limited overlap in covariate distributions.

The results of three of the simulation studies are reported in the Supplementary Material: the
Kang & Schafer (2007) example, the LaLonde (1986) dataset, and the Wong & Chan (2018)
simulation. Here we present a simulation study based on the right heart catheterization dataset
of Connors et al. (1996).

The right heart catheterization dataset was first used to study the effectiveness of right heart
catheterization in the initial care of critically ill patients. The dataset contains 2998 observations
and 77 variables, including covariates, a treatment indicator, and the outcome. Balancing the 75
available covariates exactly is not feasible in most of the simulated datasets, so for comparison
purposes we restrict the analyses to the 23 covariates listed in Table 1 of Connors et al. (1996).
We generate the datasets and calculate the minimal weights, with both exact and approximate
balance, using only these 23 covariates.

Based on this dataset, we generate 1000 simulated datasets as follows. We construct the treat-
ment indicator Zi as Zi = 1{Z∗

i >0} with Z∗
i = (α + βXi)/c + Unif(−0.5, 0.5), where Xi denotes

the observed covariates. In the model for Z∗
i , α and β are obtained by fitting a logistic regression

to the original treatment indicator in the original dataset. We simulate two scenarios, one with
good overlap (c = 10) and another with bad overlap (c = 1). For both scenarios, we generate
pairs of potential outcomes {Yi(0), Yi(1)} by fitting a regression model to the original treated and
control outcomes and predicting on the entire sample. We obtain the observed outcome by letting
Yi = ZiYi(1) + (1 − Zi)Yi(0).

In both scenarios, we compare the root mean squared errors of the estimated average treatment
effects on the entire and treated populations using both minimal weights with Algorithm 1 and
minimal weights with exact balance, i.e., with δ = 0. The results are presented in Fig. 1 and the
Supplementary Material.

Table 1(a) presents the root mean squared error of minimal weights in estimating the average
treatment effect. When the data exhibit bad overlap, minimal weights provide good estimates,
whereas their exact balancing counterparts do not admit a solution. With good overlap, minimal
weights with approximate balancing perform similarly to exact balancing.

Table 1(b) shows the results for the average treatment effect on the treated. In this case,
both exact and approximate balance admit solutions under bad overlap. The table shows that
approximate balance can markedly reduce the root mean squared error relative to exact balance.
While in a low-dimensional regime we balance fewer basis functions than the total number of
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Fig. 1. Mean squared error and bootstrapped covariate balance for different values of the tuning parameter δ: (a) good
overlap, average treatment effect; (b) bad overlap, average treatment effect; (c) good overlap, average treatment effect
on the treated; (d) bad overlap, average treatment effect on the treated. In each panel, δ starts at 0 on the horizontal
axis, and the vertical dotted line indicates δ = K−1/2, where K is the number of basis functions balanced. The δ value
selected according to the bootstrapped covariate balance, as in Algorithm 1, often coincides with or is close to the
optimal δ with the smallest error. We recommend choosing values of δ smaller than K−1/2, as greater values are likely
to violate the conditions in Assumption 1. MSE, mean squared error; Cov. Bal., covariate balance; Abs. Dev., sum of
absolute deviations; Neg. Ent., negative entropy. Abs. Dev. Cov. Bal., ; Abs. Dev. MSE, ; Variance Cov. Bal., ;

Variance MSE, ; Neg. Ent. Cov. Bal., ; Neg. Ent. MSE, .

observations, approximate balance, or �1 regularization, still helps to reduce the error. The reason
is that approximate balance trades bias for variance. In fact, when there is bad overlap, traditional
weighting estimators which use weights that balance covariates exactly tend to have high variance
as they rely heavily on a few observations. In such cases, approximate balance can pull back from
those observations and trade bias for variance to reduce the overall error.

Figure 1 shows that the root mean squared error of the effect estimates is sensitive to the choice
of δ. Moreover, the value of δ selected by Algorithm 1 often coincides with the optimal value of
δ that produces the lowest mean squared error; see the solid lines in Fig. 1. Again, Algorithm 1
selects the value of δ that minimizes the bootstrapped covariate balance, dashed lines in Fig. 1.
We observe that when δ achieves the lowest bootstrapped covariate balance, i.e., the dashed lines,
it also attains the lowest error, solid lines. In each panel of the figure, the dotted line indicates
a value of δ equal to K−1/2, where K is the number of basis functions of the covariates being
balanced. We recommend choosing values of δ smaller than K−1/2 forAssumption 1(vii) required
by Theorem 3 to hold.
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In general, minimal weights tuned with Algorithm 1 exhibit better empirical performance in
the right heart catheterization dataset than their exact balancing counterparts. Empirical studies
with the Kang & Schafer (2007) example, the LaLonde (1986) dataset, and the Wong & Chan
(2018) simulation show a similar pattern. See the Supplementary Material for details.

5. Future research

The theoretical results developed in this work can be extended to matching, where covariates
are balanced approximately, but with weights that encode an assignment between matched units
(e.g., Rubin, 1973; Rosenbaum, 1989; Hansen, 2004; Abadie & Imbens, 2006; Zubizarreta,
2012; Diamond & Sekhon, 2013). The tuning algorithm used to select the degree of approximate
balance can also be extended to matching. Promising directions for future work include doubly
robust estimation (Robins & Rotnitzky, 1995), where propensity score modelling weights can be
replaced by minimal weights (see Athey et al., 2018; Hirshberg & Wager, 2019). Also, minimal
weights can be extended to instrumental variables and regression discontinuity settings, where
model-based inverse probability weights are used for covariate adjustments.
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